||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Применяем формулу синуса двойного угла 4·cos(πх/12)·sin(πх/12)=2·(2·cos(πх/12)·sin(πх/12))=2·sin(πx/6) Так как синус ограниченная функция, то -2≤ 2·sin(πx/6)≤2. Наибольшее значение, которое может принимать выражение слева равно 2. Квадратный трехчлен х²-6х+11 положителен при любом х, так как его дискриминант D=(-6)²-4·11 <0 Выделим полный квадрат х²-6х+11=(х²-6х+9)+2=(х-3)²+2. При х=3 принимает наименьшее значение 2 в единственной точке х=2. Наименьшее значение, которое может принимать выражение справа равно 2. Значит, равенство левой и правой частей возможно только при при х=3.
2·sin(3π/6)=2 2·sin(π/2)=2 2·1=2 - верно. О т в е т. х=3