1. а)Х_1=2 1/2
Х_2=-1 1/2
б)Х_1=9
Х-2=-9
Объяснение:
2.
а)4х^2-4х-15=0
a=4 b=-4 c=-15
D =b^2-4ac
D=4^2-4×4×(-15)=16-240=256=16^2>0
X_1=-(-4)+16/2×4=20/8=5/2=2 1/2
X_2=-(-4)-16/2×4=-12/8=-3/2=-1 1/2
D/4=(4/2)^2-4×(-15)=2^2+60=64=8^2>0
X_1=(2+8)/4=10/4=5/2=2 1/2
X_2=(2-8)/4=-6/4=-3/2=-1/1/2
ответ: Х_1=2 1/2
Х_2=-1 1/2
б)Х^2-9^2=0
Применяем формулу разности квадратов:
(Х-9)(Х+9)=0
Х-9=0
Х_1=9
Х+9=0
Х_2=-9
ответ: Х_1=9
Х_2=-9
1.
Упростить:
=(2×(3×9)^1/2-(3×100)^1/2+(2×9)^1/2)×
×(3^1/2)+(24)^1/2=(2×3×(3^1/2)-10×(3^1/2)+
+3×(2^1/2))×(3^1/2)=
=6×3-10×3+3×(6^1/2)+(4×6)^1/2=
=18-30+3×(6^1/2)+2×(6^1/2)=
=-12+5(6^1/2)
ответ: -12+5(6^1/2)
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
а) -y = 2-0,95
-y=1,05
y=-1,05
b) x=7,3/0,073
x=100
v) 7x=14
x=14/7
x=2
g) x-4=8*3
x-4=24
x=24+4
x=28