Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Пусть х - скорость одного автомобиля, y - скорость второго. х + у - скорость сближения. 100/x - время первого автомобиля, затраченное на весь путь 100/y - время второго автомобиля, затраченное на весь путь Зная, что автомобили встретились через 1 час, составим первое уравнение: 100/ (x + y) = 1 Зная, что время одного автомобиля меньше времени другого на 50 мин (5/6 часа), составим второе уравнение: 100/x - 100/y = 5/6
Так подкоренное выражение в квадрате? Понятее писать нужно.