1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.
a) функция - композиция дробно-рациональной
t(x)=1/(x-1) и показательной y=7^(t(x))
t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)
y=7^(t(x)) - непрерывна при t∈(-∞;+∞)
Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)
Проверяем непрерывность в точке x=1
Находим предел слева: lim (x→1-0)7^(1/(x-1))=0
x→1-0 тогда (1/(x-1))→-∞
7^(-∞)→0
Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞
x→1+0 тогда (1/(x-1))→+∞
7^(+∞)→+∞
x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)
б) y=x² непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]
y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]
Значит, надо исследовать непрерывность в точке х=1
Находим предел слева: lim (x→1-0)x²=(1-0)²=1
Находим предел справа:lim (x→1+0)7=2·1+3=5
Предел слева не равен пределу справа.
Значит предел функции в точке не существует и потому
x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)
по геометрическому смыслу производной:
3x(x+4)=0
x=0 и x=-4