1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)
1) Прямая пропорциональность у=кх, подставим значения х и у заданной точки -5=к*3, отсюда к=-5/3=-1 2/3, и функция у=-1 2/3*х
2) В точке пересечения с осью координата другой оси =0
а) с оью 0х у=0, тогда 0=1.2х-24, 1.2х=24, х=20; с осью 0у х=0, у=-24
б) 0х: у=0, 0=-3/5х+2, х=10/3=3 1/3; ось 0у х=0, у=2
в) график у=10 не зависит от х, т.е. для любого х прямая параллельна 0х и ее не пересекает, а пересекает только у=10
3) раз график параллелен оси 0х, то функция не зависит от х (см. пример 2), и имеет вид у=в, для заданной точки М(-3;1) у=1, значит в=1 и функция имеет вид у=1 для любого х, в том числе х=-3