М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Йфячы
Йфячы
22.07.2020 22:54 •  Алгебра

Выражения 1) -2ab^3*3a^2*5^4. 2) (-2a^5b^2)^3.

👇
Ответ:
alek09
alek09
22.07.2020
...........................................
Выражения 1) -2ab^3*3a^2*5^4. 2) (-2a^5b^2)^3.
4,4(63 оценок)
Открыть все ответы
Ответ:
танюха12354
танюха12354
22.07.2020

Объяснение:

Мы находимся в условиях "испытаний Бернулли". Случайная величина Х - число возвращённых пар обуви - может принимать значения от 0 до 6. Найдём соответствующие вероятности [символом C(n,k)] обозначено число сочетаний из n по k]:

p0=(1-0,3)⁶=0,117649;

p1=C(6,1)*(1-0,3)⁵*(0,3)¹=0,302526;

p2=C(6,2)*(1-0,3)⁴*(0,3)²=0,324135;

p3=C(6,3)*(1-0,3)³*(0,3)³=0,18522;

p4=C(6,4)*(1-0,3)²*(0,3)⁴=0,059535;

p5=C(6,5)*(1-0,3)¹*(0,3)⁵=0,010206;

p6=(0,3)⁶=0,000729

Проверка: p0+p1+p2+p3+p4+p5+p6=1 - значит, вероятности найдены верно. Составляем ряд распределения случайной величины Х:

xi         0               1                 2               3               4               5                6

pi  0,117649  0,302526  0,324135  0,18522  0,059535 0,010206  0,000729

Математическое ожидание M[X]=∑xi*pi=1,8

Дисперсия D[X]=∑(xi-M[X])²*pi=1,26

Среднее квадратическое отклонение σ[X]=√D[X]≈1,12

Функция распределения F(x) задаётся условиями:

1. F(0)=p(X<0)=0;

2. F(1)=p(X<1)=p0=0,117649;

3. F(2)=p(X<2)=p0+p1=0,420175;

4. F(3)=p(X<3)=p0+p1+p2=0,74431;

5. F(4)=p(X<4)=p0+p1+p2+p3=0,92953;

6. F(5)=p(X<5)=p0+p1+p2+p3+p4=0,989065;

7. F(6)=p(X<6)=p0+p1+p2+p3+p4+p5=0,999271;

8. F(x>6)=p0+p1+p2+p3+p4+p5+p6=1.

По этим данным можно построить график функции распределения.

4,4(83 оценок)
Ответ:
stikmanov
stikmanov
22.07.2020

Пусть функция     y=f(x)      определена на отрезке     [a;b]

Разобьём отрезок произвольным образом на n  частей точками:

a < x_{0}

В каждом интервале произвольным образом выбираем точку

c_{i}\in [x_{i-1};x_{i}]

Cумма

S_{n}=\Sigma^{i=n}_{i=1}f(c_{i})\cdot \Delta x_{i},

где       \Delta x_{i}=x_{i}-x_{i-1}    -  длина частичного отрезка   [x_{i-1};x_{i}] ,

называется интегральной суммой функции f(x)  на отрезке   [a;b].

Определенным интегралом от функции  f(x)   на отрезке   [a;b] называется предел интегральных сумм  S_{n},   при условии, что длина наибольшего частичного отрезка стремится к нулю

\int\limits^a_b {f(x)} \, dx = \lim_{{ {{n \to \infty} \atop {max \Delta x_{i} \to 0}} \right. } f(c_{i})\cdot \Delta x_{i}

Геометрическая интерпретация определённого интеграла - площадь криволинейной трапеции

4,4(91 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ