1) 15y²+6y =5y+2
15y²-5y+6у-2=0
5у(3у-1)+2(3у-1)=0
(3у-1)(5у+2)=0
3у-1=0 5у+2=0
3у=1 5у=-2
у=1/3 у=-2/5
ответ: -2/5; 1/3.
2) y³-2y²+у-2=0
y²(у-2)+(у-2)=0
(у-2)(y²+1)=0
у-2=0 y²+1=0
у=2 y²=-1 нет корней, так как квадрат всегда неотрицательное число
ответ: 2.
3) y³+6y²-y-6=0
y²(у+6)-(у+6)=0
(у+6)(y²-1)=0
у+6=0 y²-1=0
у=-6 y²=1
у=1 и у=-1
ответ: -1; 1; 2.
4) y³-12=3y²-4y
y³-3y²+4у-12=0
y²(у-3)+4(у-3)=0
(у-3)(y²+4)=0
у-3=0 y²+4=0
у=3 y²=-4 нет корней, так как квадрат всегда неотрицательное число
ответ: 3.
Путь обратно S2 = 30 км
Скорость на пути из города в поселок V1 (неизвестна, примем за x)
Скорость на обратном пути V2 = V1 + 2 км/ч = x+2
Время на первом пути T1 = S1 / V1 = 24 / x
Время на втором пути T2 = S2 / V2 = 30 / (x+2) = T1 + 0,1 ч. = 24 / x + 0,1
Получили уравнение:
30 / (x+2) = 24 / x + 0,1
Приводим дроби к общему знаменателю:
(30 * x - 24 * (x+2) - 0,1 * x * (x+2)) / (x * (x+2)) = 0
x ≠ 0, x ≠ -2 (верно, так как x - скорость велосипедиста)
Числитель приравниваем к 0, раскрываем скобки:
30x - 24x - 48 - 0,1 x² - 0,2x = 0
Решаем квадратное уравнение:
x1=48, x2=10
Скорость из города в посёлок могла быть 48 км/ч или 10 км/ч (в обоих случаях условия задачи выполняются, проверь)
Скорость на обратном пути, V2, будет соответственно 50 км/ч или 12 км/ч.
P.S. По опыту езды на велосипеде могу сказать, то поддерживать скорость 50 км/ч на протяжении 30 км могут только спортсмены при езде по подготовленному треку на хорошем спортивном велосипеде. Так что правильный ответ скорее всего 12 км/ч. Но и 50 км/ч соответствует условию задачи.