М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vik20051
vik20051
21.01.2022 07:33 •  Алгебра

Выражение 2-3x-5x^/4x^+4x и найдите его значение при x=-1/7

👇
Ответ:
KEYK01
KEYK01
21.01.2022
 2 - 3X - 5X^2 = - 5X^2 - 3X + 2 = ( X + 1)*( X - 0.4)
D = 9 -4*(-5)*2 = 9 + 40 = 49 ; V D = 7 
X1= ( 3 + 7 ) : ( - 10 ) = ( - 1 ) 
X2 = ( - 4 ) : ( - 10) = 0.4 

Числитель ( Х + 1)*( X - 0.4) 

4X^2 + 4X = 4X * ( X + 1 ) (  знаменатель)

Сокращаем числитель и знаменатель на ( Х + 1), получаем

( Х - 0,4) / 4Х 

При Х = - 1/7
( - 1/7 - 2/5) / ( - 4/7) = ( ( - 5 - 14) / 35 ) / ( - 4/7) = ( - 19/35) : ( - 4/7 ) = + 19/20 
ответ 19/20 ( или 0.95) 
4,8(23 оценок)
Открыть все ответы
Ответ:
LentaKuim
LentaKuim
21.01.2022
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
4,5(35 оценок)
Ответ:
WaterdropE
WaterdropE
21.01.2022
Рассуждаем следующим образом.
Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
\left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]
Или:
\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]
Тогда при возведении первой матрицы в квадрат получим матрицу:
\left[\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right]
А при возведении второй матрицы в квадрат получим:
\left[\begin{array}{ccc}0&0&0\\0&0&0\\1&0&0\end{array}\right]
А возведя в третью степень обе матрицы, получим нулевые матрицы.
ответ: \left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]или\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]
4,7(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ