Пусть х - производительность первого рабочего, а у - производительность второго рабочего. Тогда за 4 дня они могут выполнить совместно 4(х+у)=2/3. Количество дней за которое может выполнить работу первый рабочий 1/х, а второй 1/у. Составим и решим систему уравнений:
4(х+у)=2/3
1/х-1/у=5
х+у=1/6
(у-х)=5ху
у=1/6-х
1/6-х-х=5(1/6-х)*х
1/6-2х=5/6х-5х²
5х²-17/6х+1/6=0 |*6
30х²-17х+1=0
D=17²-4*30=169=13²
x₁=(17+13)/60=1/2 y₁=1/6-1/2<0 не подходит
x₂=(17-13)/60=1/15 у₁=1/6-1/15=3/30=1/10
Значит производительность первого работника 1/15, а второго 1/10.
1:1/15=15 дней выполнит работу первый рабочий
1:1/10=10 дней выполнит работу второй рабочий
ответ за 10 дней и за 15 дней
Пусть дан т-к АВС.
Продлим медианы на их длину ( см. рис)
По свойству диагоналей параллелограмма
АА1²+ВС²=2(АВ²+АС²)
и
СС1²+АВ²=2(АС²+ВС²)
Пусть АВ=с, ВС=а
Составим систему уравнений:
[(2*6√7)²+a²=2(c²+14²)
[(2*3√7)²+c²=2(14²+a²)
⇒
[ а²-2с²=2*14² -144*7
[-2а²+с²=2*14²-36*7 домножим на 2 обе стороны этого уравнения.
Сложим уравнения системы:
[а²-2с=2*14² -144*7
[-4а²+2с²=4*14²-72*7
-3а²=6*14²-216*7⇒
а²=112
а=4√7
Подставим найденное значение а в уравнение
а²-2с²=2*14² -144*7 ⇒
112+144*7-2*196=2 с²
с²=364
с=2√91
АВ=2√91
ВС=4√7
---------
Задачу можно решить по т. косинусов.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
Тогда АО=4√7, CO=2√7
Из ∆ АОС
АС²=АО²+СО²-2*АО*СО*cos ∠АОС
cos ∠АОС=(АС²-АО²+СО²):(-2*АО*СО)
cos ∠АОС=[14²-(4√7)²-(2√7)²]:[-2*(4√7)*(2√7]
cos ∠АОС= -56:2*56= -1/2 - это косинус 120º
В ∆ СОК ∠ СОК =180°-120°=60°
ОК=АК:3=2√7
ОК=ОС, угол СОК=60°⇒
∆ СОК - правильный, СК=2√7,
ВС=2 СК=4√7
В Δ АМО ∠ МОА=∠ СОК=60°
АМ²=МО+АО-2*МО*АО*cos∠АОМ
АМ²=(√7)²+(4√7)²-2*(√7)*(4√7)*1/2*cos∠АОМ
АМ²=7+16*7-2*4*7*1/2
АМ²=91
АМ=√91
AB=2√91