Когда персонажи ели варенье втроем, то Малышу досталась 1/9 часть. Значит, Карлсон и Винни-Пух съели 1-1/9=8/9 варенья - в 8 раз больше, чем Малыш. Если бы ели только Малыш и Карлсон, то Малыш съел бы 1/4, а Карлсон 1-1/4=3/4. Следовательно, Карлсон съедает варенья столько, сколько съели бы 3 Малыша. Значит, когда ели все трое, Карлсон съел 3*1/9=3/9. Тогда Винни-Пух съел 8/9-3/9=5/9 всего варенья. Это означает, что Винни-Пух съедает как 5 Малышей. Следовательно, если есть будут только Малыш и Винни-Пух, то Малыш съест 1 часть, а Пух 5 частей. Значит Малышу достанется 1/6 от варенья.
1) В партии 95 нормальных изделий и 5 бракованных. Партию примут, если возьмут 50 изделий и они все будут нормальными. Вероятность Р=95/100*94/99*93/98...46/51 После сокращения остаётся: Р=(50*49*48*47*46)/ (100*99*98*97*96= 50/100*49/98*48/96* (47*46)/(99*97)= (1/2)^3*2167/9603=2167/76824 2) В одной урне 5 Б+3 Ч, в другой 4 Б+4 Ч. Вынимаем шар, он оказался Б. Если 1 шар был из 1 урны, то осталось (4 Б+3 Ч) и (4 Б+4 Ч). Вынимаем 2 шар. Если он из 1 урны, то р1=1/2*4/7=4/14 Если он из 2 урны, то p2=1/2*4/8=4/16 Вероятность, что он белый P(1)=p1+p2=4/14+4/16=60/112 Если 1 шар был из 2 урны, то осталось (5 Б+3 Ч) и (3 Б+4 Ч). Вынимаем 2 шар. Если он из 1 урны, то p3=1/2*5/8=5/16 Если он из 2 урны, то p4=1/2*3/7=3/14 Вероятность, что он белый P(2)=5/16+3/14=83/112 Но 1 шар мог быть из 1 или 2 урны с равной вер-тью 1/2. P=1/2*P(1)+1/2*P(2)= 1/2*60/112+1/2*83/112=143/224
2,4*5-1 = 11,5
Число 5√6+1 находится между числами 11 и 12.