Втреугольник abc вписан параллелограмм bdef таким образом, что точки д, e, f лежат на сторонах ав, ас и bс соответственно. площади параллелограмма bdef и треугольника abc относятся, как 1: 3. найдите стороны параллелограмма, если ав = 4, вс= 8
Переберем все варианты по комбинаторике. Если первые 2 цифры - 24, то варианта для 3-ей цифры 3. Это 242, 244 и 249. На месте 2-ой цифры может также быть 2: 222, 224, 229 и 9: 292, 294, 299. Вот уже 9 вариантов для случая, когда 1-я цифра - 2. По 9 же вариантов будет и для случаев, когда 1-я цифра - 4 и 9. Переберем и их для очистки совести: 4, 2-я цифра - 4: 442, 444, 449; 4, 2-я цифра - 2: 422, 424, 429; 4, 2-я цифра - 9: 492, 494, 499; 9, 2-я цифра - 4: 942, 944, 949; 9, 2-я цифра - 2: 922, 924, 929; 9, 2-я цифра - 9: 992, 994, 999. У нас получилось 9 троек цифр, то есть 27 чисел. Проверь свой ответ, там не 22)))
Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...