Для начала приведем выражение к виду квадратного уравнения, так как видим формулу сокращенного умножения квадрата разности: Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений: Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы. Она вычисляется по формуле: Мы получили значение координаты точки вершины параболы но только по оси Х. Для оси Y просто подставим полученное значение в исходную функцию: То есть точка 0 по оси Y. Итого координата вершины параболы: 3;0
Для начала приведем выражение к виду квадратного уравнения, так как видим формулу сокращенного умножения квадрата разности: Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений: Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы. Она вычисляется по формуле: Мы получили значение координаты точки вершины параболы но только по оси Х. Для оси Y просто подставим полученное значение в исходную функцию: То есть точка 0 по оси Y. Итого координата вершины параболы: 3;0
Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений:
Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы.
Она вычисляется по формуле:
Мы получили значение координаты точки вершины параболы но только по оси Х.
Для оси Y просто подставим полученное значение в исходную функцию:
То есть точка 0 по оси Y.
Итого координата вершины параболы: 3;0