чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
эта совокупность имеет решение, если:
2. б), г); 3.
.
Объяснение:
Задание №2.
Большинство выражений в вариантах ответа представлены алгебраическими дробями.
Дробь не имеет смысла, если её знаменатель равен нулю, так как по правилу на ноль делить нельзя.
Подставим в каждый вариант ответа значение
и вычислим полученное выражение.
а)
Выражение имеет смысл, поэтому этот вариант нам не подходит.
б)
Выражение не имеет смысл, т.к. знаменатель равен нулю, поэтому этот вариант нам подходит.
в)
Выражение имеет смысл, поэтому этот вариант нам не подходит.
г)
Выражение не имеет смысл, т.к. знаменатель равен нулю, поэтому этот вариант нам подходит.
Задание №3.
Для того, чтобы привести дробь к определённому знаменателю, нужно знаменатель этой дроби (числитель по правилу соответственно) домножить на такое число, чтобы произведение было равно искомому знаменателю.
В данном случае нужно домножить дробь на
.
Эта дробь и будет являться ответом данного задания.