М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LadaSova
LadaSova
09.02.2021 05:16 •  Алгебра

Найдитезначение выражения 36*(1/3)³+6*(1/3)² заранее )

👇
Ответ:
katy12345652564
katy12345652564
09.02.2021
ответ этого выражения равен 42
4,6(81 оценок)
Открыть все ответы
Ответ:
small2005
small2005
09.02.2021

Объяснение:

z = 1/(2x^2) + 1/(2y^2), при условии 1/x^4 + 1/y^4 = 2

Выразим y через x

1/y^4 = 2 - 1/x^4 = (2x^4 - 1)/x^4

1/(2y^2) = √(2x^4 - 1)/(2x^2)

Область определения: x ≠ 0; y ≠ 0; x^4 > 1/2; |x| > 1/(кор. 4 ст. из 2) ≈ 0,84

В функцию z входит 1/(2y^2), поэтому я так и написал.

z = 1/(2x^2) + 1/(2y^2) = 1/(2x^2) + √(2x^4 - 1)/(2x^2) = (√(2x^4 - 1) + 1) / (2x^2)

Теперь находим производную функции уже одной переменной.

z ' = [8x^3/(2√(2x^4 - 1))*2x^2 - 4x(√(2x^4 - 1) + 1) ] / (4x^4) =

= [2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1] / x^3

В точке экстремума производная, то есть ее числитель, равна 0.

2x^4/√(2x^4 - 1) - √(2x^4 - 1) - 1 = 0

(2x^4 - (2x^4 - 1)) / √(2x^4 - 1) = 1

1/√(2x^4 - 1) = 1

√(2x^4 - 1) = 1

2x^4 - 1 = 1

2x^4 = 2

x^4 = 1

x1 = -1; x2 = 1;

y^4 = x^4/(2x^4 - 1) = 1/(2-1) = 1; y1 = -1; y2 = 1.

z = 1/(2x^2) + 1/(2y^2) = 1/(2*1) + 1/(2*1) = 1

Критические точки: (-1; -1; 1); (-1; 1; 1); (1; -1; 1); (1; 1; 1).

При x = -2 < -1 будет

z ' = (2*16/√15 - √15 - 1) / (-8) ≈ 3,4/(-8) < 0

Функция падает.

При x = -0,9 € (-1; -1/(кор. 4 ст из 2) ) будет

z ' = (2*0,9^4/√(2*0,9^4-1) - √(2*0,9^4-1) - 1) / (-0,9)^3 =

= (1,3122/√0,3122 - √0,3122 - 1) / (-0,729) ≈ 0,8/(-0,73) < 0

Функция падает.

При x < -1 функция падает и при x > -1 функция тоже падает.

Значит, x = -1 - это критическая точка, но не экстремум.

Тоже самое с x = 1.

При x € (1/кор. 4 ст из 2); 1) функция растет, и при x > 1 функция тоже растет.

Поэтому у этой функции экстремумов нет.

4,5(20 оценок)
Ответ:
Юлькач
Юлькач
09.02.2021
1) Пусть t=sinx, где t€[-1;1], тогда
2t^2+t-1=0
t1=(-1-3)/4=-1
t2=(-1+3)/4=1/2
Вернёмся к замене
sinx=-1
x=-Π/2+2Πn, n€Z
sinx=1/2
x1=Π/6+2Πm, m€Z
x2=5Π/6+2Πm, m€Z
ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z
2) 6cos^2x+cosx-1=0
Пусть t=cosx, где t€[-1;1], тогда
6t^2+t-1=0
t1=(-1-5)/12=-1/2
t2=(-1+5)/12=1/3
Вернёмся к замене:
cosx=-1/2
x=+-arccos(-1/2)+2Πn, n€Z
cosx=1/3
x=+-arccos(1/3)+2Πm, m€Z
ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z
3) 2cos^2x+sinx+1=0
2(1-sin^2x)+sinx+1=0
-2sin^2x+sinx+3=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+t+3=0
t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1]
t2=(-1+5)/-4=-1
Вернёмся к замене
sinx=-1
x=Π/2+2Πn, n€Z
ответ: Π/2+2Πn, n€Z
4,8(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ