Составьте какое-нибудь уравнение с двумя переменными,график которого проходит через точку A(3;-3)
" решение " : какое-нибудь уравнение например
у = 2x² - 7x проверка : - 3 =2*3² -7*3 || 2*9 - 21 = -3 ||
* * * * * * * * * * * * * * * * * * * * * * *
Изменим условия задачи
Составьте какое-нибудь ЛИНЕЙНОЕ уравнение с двумя переменными , график которого проходит через точку A(3;-3) .
Решение : уравнение имеет вид a*x +b*y + c =0 , где a , b , с постоянные и a² +b² ≠ 0
Если график проходит через точку A(3 ; - 3) , значит
a*3 +b*(-3) + c =0 ⇒ c =3b -3a и получаем общий вид таких уравнений a*x +b*y + 3b -3a = 0 || ≡ ax +by + 3b -3a = 0 ||
Вместо a и b можно поставить любое значение одновременно не равные нулю
например :
1) a = 7 , b = 4 ⇒ 7x +4y - 9 =0
или
2) a =b = 1 ⇒ x + y = 0
a) lim(x→∞) (3x⁶-x²+x)/(x⁶-2) Неопределённость ∞/∞.
Разделим одновременно числитель и знаментель на x⁶:
lim(x→∞) (3-(1/x⁴)+(1/x⁵))*(1-(2/x⁶))=(3-0+0)/(1-0)-3/1=3.
б) lim(x→1) (√(1+3x²)-2)/(x²-x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля:
lim(x→1) (√(1+3x²)-2)'/(x²-x)'=
=lim(x→1) 6*x/(2*√(1+3x)*(2x-1))=6/(2*2*1)=6/4=3/2.
в) lim(x→0) (sin(5*x)/(3*x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля: lim(x→0) (sin(5*x)'/(3*x)'=lim(x→0) 5*cos5x/3=5*1/3=5/3.