1) Если выражение (2х+7)^4 + (2x-4)^4 равно 0, то у него 4 корня, все они имеют выражения с мнимыми числами. Если раскрыть скобки, получим: 32x⁴ + 96x³ + 1560x² + 2232x + 2657 = 0 Корни полинома равны :x1 ≈ −0.750000000000003 − i ∙ 6.63908729652601 P(x1) ≈ 0 iter = 1 x2 ≈ −0.75 + i ∙ 1.13908729652601 P(x2) ≈ 0 iter = 6 x3 ≈ −0.75 − i ∙ 1.13908729652601 P(x3) ≈ 0 iter = 4 x4 ≈ −0.749999999999997 + i ∙ 6.63908729652601 P(x4) ≈ 0 iter = 1 2) А = 0,6Б А + 84 = 1,4Б А = 1,4Б-84 Приравниваем правые части этих уравнений: 0,6Б = 1,4Б-84 2Б = 84 Б = 84 / 2 = 42 А = 0,6*42 = 25,2 А + Б = 42 + 25,2 = 67,2.
Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
3*1-2*1=1