Объяснение:
Функция задана формулой y=6x-10 определите
а) чему равно значение y при x=3
б) при каком значение x значений y равно 8
в) проходит ли график функции через точку A (-5;29)
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = -6х-10
Таблица:
х -1 0 1
у -16 -10 -4
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=3
у= 6*3-10=8 у=8 при х=3
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=8
8=6х-10
-6х= -10-8
-6х= -18
х=3 у=8 при х=3
3)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(- 5; 29)
у = 6х-10
29= 6*(-5)-10
29= -30-10
29≠ -40, не проходит.
1210
Объяснение:
Двухзначные числа, которые делятся на 4 с остатком 1 — это числа, которые делятся на 4 и ещё мы к ним добавляем 1 (13, 17, 21 и т.д.)
всего таких чисел 22. Самое первое число — 13, последнее — 97. И тут мы воспользуемся методом Гауса. Это метод, когда пары чисел с конца и с начала дают одно и тоже число. и тогда можно просто поделить на 2 количество чисел, посчитать количество пар и умножить их количество на сумму первого и последнего числа.
Вернёмся к задаче. Так как 97+13=110, а пар у нас 22:2=11, то достаточно умножить 110 на 11. Это будет 1210. Вот и ответ!
6x - 19 <= 24x + 53
-18x <= 72
x >= -4