Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
В решении.
Объяснение:
В 8 часов, утром, из Лённеберги выехал Эмиль на лошади со скоростью 16 км/ч, а позже навстречу ему из их родного хутора Катхульта выехал отец на телеге со скоростью 15 км/ч, чтоб встретить Эмиля и постараться избежать очередной его шалости. Расстояние между Лённебергой и Катхультом 42,75 км, а встретились отец и сын на расстоянии 18,75 км от Катхульта и вместе поехали домой. В какое время отец Эмиля выехал из Катхульта?
Формула движения: S=v*t
S - расстояние v - скорость t – время
1) Найти время в пути отца:
18,75 : 15 = 1,25 (часа) = 1 и 1/4 часа = 1 час 15 минут.
2) Найти путь, который проехал сын до места встречи:
42,75 - 18,75 = 24 (км).
3) Найти время, которое сын провёл в пути:
24 : 16 = 1,5 (часа) = 1 и 1/2 часа = 1 час 30 минут.
4) Сын выехал в 8 часов, в пути был 1 час 30 минут, найти время встречи:
8:00 + 1:30 = 9:30 (часов).
5) На момент встречи отец был в пути 1 час 15 минут, найти время, в которое отец выехал из дома:
9:30 - 1:15 = 8:15 (часов).
Отец выехал из дома в 8 часов 15 минут.
с раствором: 100%=1800
115%=х х=
и просто перемножаем на количество кирпичей:
2070*1300=2691000