1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.
Весь объем работы (задание) = 1 Время , требуемое для выполнения работы самостоятельно: I комбайн х ч. II комбайн (х+5) ч. Производительность труда при работе самостоятельно: I комбайн 1/х объема работы в час II комбайн 1/(х+5) об.р./час Производительность труда при совместной работе: 1/х + 1/(х+5) = (х+5+х)/ х(х+5) = (2х+5)/(х² +5х) об.р./час Время работы совместно = 6 часов. Уравнение. 6 * [ (2х+5)/(х² +5х) )] = 1 x² +5x ≠ 0 ⇒ x≠0 ; х≠ -5 (2х +5) /(х² + 5х) = 1/6 1(х² +5х) = 6(2х +5) х² +5х = 12х + 30 х² + 5х - 12х - 30 = 0 x² - 7x - 30 = 0 D=(-7)² - 4*1*(-30) = 49 + 120= 169 = 13² D>0 два корня уравнения х₁= (7 - 13) /(2*1) = -6/2=-3 - не удовлетворяет условию задачи х₂ = (7+13)/2 = 20/2 = 10 (ч.) время , требуемое I комбайну , для выполнение объема работы самостоятельно.
Проверим: 10 + 5 = 15 (ч.) потребуется II комбайну для выполнения задания самостоятельно 6 * (1/10 + 1/15 ) = 6 * [ (3+2)/30 ] = 6 * 1/6 = 1 - всё задание выполнено за 6 часов.
ответ: за 10 часов может выполнить задание первый комбайн, работая один.