Количество игр: 2
:
Выигрыш (В) - 3 очка
Ничья (Н) - 1 очко
Проигрыш (П) - 0 очков
P(Н) = 0,1
Так как общая вероятность равна 1 или 100%, то:
P(В+П) = 1 - 0,1 = 0,9
По условию Р(В) = Р(П), тогда:
Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45
Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничьяР(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71
Объяснение:
2(6-2x)(7-3x)-12(2x-1²)>4(2-3x)(3x+2)-8(2x-7) |2
42-18x-14x+6x²-12x+6>2(4-9x²)-8x+28
6x²-44x+48>8-18x²-8x+28 |2
3x²-22x+24>-9x²-4x+18
3x²+9x²-18x+6>0
12x²-18x+6>0 |6
2x²-3x+1>0
Допустим 2x²-3x+1=0
2x²-x-2x+1=0
(2x²-2x)-(x-1)=0
2x(x-1)-(x-1)=0
(2x-1)(x-1)=0
2x-1=0; 2x=1; x₁=1/2=0,5
x-1=0; x₂=1
Для определения знака функции возьмём пробную точку на интервале (-∞; 0,5), например, 0:
2·0²-3·0+1=0-0+1=1; 1>0
+ - +
°°>x
0,5 1
ответ: x∈(-∞; 0,5)∪(1; +∞).
Воспользуемся формулой приведения:
В левой части уравнения от разности косинусов перейдем к произведению.
Произведение равно нулю, если один из множителей равен нулю: