Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональные числа
ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
x-8)(p+x)≤0, p∈N,
x^2+(p-8)x-8p≤0,
a=1>0,
x^2+(p-8)x-8p=0,
D=(p-8)^2-4*(-8p)=(p+8)^2>0,
x_1=(-(p-8)-(p+8))/2=-p,
x_2=(-(p-8)+(p+8))/2=8,
-p≤x≤8, x∈[-p;8];
a) x_2=x_1+9,
-p+9=8,
p=1,
-1≤x≤8, x∈[-1;8]; /-1, 0, 1, 2, 3, 4, 5, 6, 7, 8
б) -3<x_1≤-2,
-3<-p≤-2,
2≤p<3,
p=2,
-2≤x≤8, x∈[-2;8]; /-2, -1
в) -4<x_1≤-3,
-4<-p≤-3,
3≤p<4,
p=3,
-3≤x≤8, x∈[-3;8]; /-3, -2, -1, 0
г) x_1>0,
-p>0,
p<0, p∉N
^ - возведение в степень, ^2 - в квадрате, ^3 - в кубе, ^(10) - в 10 степени
_ - нижний индекс, х_1 - х первое, х_2 - х второе
(-4-3-2-1)*x=24
-10*x=24
x=24:(-10)
x=-2,4