1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25
0 + 0 + 4 = 4. ответ на вопрос какое минимальное значение выражения, будет 4.
выражения теперь превращается в
(6x-7y-9)²+(2x-3y-1)²+4=4. Переносим 4 за знак равенства и выражение равно (6x-7y-9)²+(2x-3y-1)²=0
Извлекаем корень квадратный из обеих частей, чтобы от квадрата избавиться.
(6x-7y-9)+(2x-3y-1)=0
Нам надо найти значения х и у при которых уравнение имеет мин. значение. Для этого разбиваем его на 2 части и получаем систему(почему см. вначале)
Умножаем второе уравнение на 3. И получаем 3x-9y-3=0
Вычитаем одно уравнение из второго и получаем
2y-6=0
2y=6
y=3
Подставляем у в любое уравнение и получаем
(6x-7y-9) --> (6x-7*3-9)=0
6x-21-9=0
6x-30=0
6x=30
x=5
x=5; y=3
мин. значение = 4