В решении.
Объяснение:
19. На факультете А отличники составляют 10% от общего количества студентов этого факультета, на факультете Б – 20%, а на факультете В – лишь 4%. Найдите средний процент отличников по всем трём факультетам, если известно, что на факультете Б учится на 50% больше студентов, чем на факультете А, а на факультете В – вдвое меньше, чем на факультете А.
х - студентов на А.
1,5х - студентов на Б.
х/2=0,5х - студентов на В.
0,1х - отличников на А.
0,2*1,5х=0,3х - отличников на Б.
0,04*0,5х=0,02х - отличников на В.
1) Найти количество студентов на трёх факультетах:
х + 1,5х + 0,5х = 3х.
2) Найти количество отличников на трёх факультетах:
0,1х + 0,3х + 0,02х = 0,42х.
3) Найдите средний процент отличников по всем трём факультетам:
0,42х : 3х * 100% = 14 %.
Имеем:f(x)=2x^4-x+1; f'(x)=(2x^4-x+1)'=8x^3-1
Из уравнения f'(x)=0, или 8x^3-1=0, находим стационарные точки функции f(x):
8x^3=1
x^3=1/8
x=1/2=0.5
В данном случае одна стационарная точка.
В интервал [-1, 1] попадает эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.
В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4; f(1)=2*1^4-1+1=2.
Из трех значений f(1/2)=f(0.5)=0.625, f(-1) =4, f(1) =2 наименьшим является 0.625, а наибольшим 4.
Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно 0.625, максимальное 4.
84 * (- 1/7) + 40 y = 8
40 y = 8 +84 * (1/7) = 8 + 12 = 20
y = 20/40 = 0,5