1. Обозначим события:
A1 - попадание в первую область мишени;
A2 - попадание во вторую область мишени;
A3 - попадание в третью область мишени.
P(A1) = 0,45;
P(A2) = 0,35;
P(A3) = 0,2.
2. Вероятность событий B и С, что при двух выстрелах стрелок попадет в первую или во вторую область мишени, соответственно, равна:
P(B) = P(A1)^2 = 0,45^2 = 0,2025;
P(С) = P(A2)^2 = 0,35^2 = 0,1225.
3. События B и C несовместимы, поэтому вероятность события D, что при двух выстрелах стрелок попадет либо в первую, либо во вторую область:
P(D) = P(B) + P(C);
P(D) = 0,2025 + 0,1225 = 0,3250.
ответ: 0,3250.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
отсюда получаем что AC=8*корень из 7/4 и отсюда AC=2 корня из 7