В первой скобке квадрат разности распишем по формуле, а вторую и третью скобку свернем тоже по формуле разности квадратов, раскроем скобки и приведем подобные слагаемые -(a-2)(a+2)=-2a+1-(-4)=-2a+1-+4=-2a+5
1) В треугольнике против большей стороны лежит больший угол . В треугольнике ABC большая сторона AB против этой стороны лежит <C, значит <C = 120° . Сумма углов в треугольнике равна 180° , значит третий неизвестный угол треугольника равен 180 - (120 + 40) = 180 - 160 = 20°. AC - меньшая сторона треугольника против неё лежит <B , значит <B = 20° Против стороны BC лежит <A, значит < A = 40°.
2) <A = 50° , <B = x , <C = 12x Сумма углов в треугольнике равна 180° , значит 50 + x + 12x = 180 13x = 130 x = 10° - <B 12 * 10 = 120° - < C
3) A| | | D | C| B
<C = 90° , <B = 35° Сумма острых углов в прямоугольном треугольнике равна 90°, значит <A = 90° - <B = 90° - 35° = 55° В треугольнике ACD , <ADC = 90° , так как CD - высота <ACD = 90° - <A = 90° - 55° = 35° ответ : 35° , 55° , 90°
1)a) y = 7x + 8 Область определения- любые значения x, то есть x э (- бесконечности;+бесконечности) б) y = 2/(3x + 9) Знаменатель дроби не должен равняться нулю 3x + 9 не равно 0, x не равен - 3, значит область определения x э (- бесконечности; - 3) U (- 3; + бесконечности) в) y = (x + 3)² - область определения любые значения х, то есть x э (- бесконечности;+бесконечности) 2a) y = 1/(3x² +2x + 3) 3x² + 2x + 3 не должно = 0 3x² + 2x + 3 = 0 D/4 = 1 - 9= - 8 Дискриминант отрицательный, а старший член положительный, значит 3x² + 2x + 3 > 0 при любых х, значит область определения x э (- бесконечности;+бесконечности) б) q(x) = 40/(1-x) 1 - x не равно 0 , значит x не равен 1, тогда область определения x э (- бесконечности; 1) U (1; + бесконечности)