2) 12p³-(1/3)p²-1-3p×(3/3)×p²=
=12p³-(1/3)p²-1-3p×1p²=
=12p³-(1/3)p²-1-3p³=9p³-(1/3)p²-1=
=(1/3)(27p³-p²-3)
4) 5x+(1/5)x-20+x+(17/20)-5x=
=(1/5)x-20+x+(17/20)=(6/5)x-(383/20)=
=1/20(24x-383)
6) 64-(2ab/(a-8)²)+2ab-(a²/(8-a)²)=
=64-(2ab/(a-8)²)+2ab-(a²/(-(a-8))²)=
64-(2ab/(a-8)²)+2ab-(a²/(a-8)²)=
64(a²-16a+64)-2ab+2a³b-32a²b+128ab
-a²/(a-8)²=
63a²-1024a+4096+126ab+2a³b-32a²b/(a-8)²
Больше никак не сократить!
8) x²+(6/x²)-9-(3(2x-1)/9)-x²=
=(6/x²)-9-((2x-1)/3)=
=(18-27x²-x²(2x-1))/3x²)=
=((18-27x²-2x³+x²)/3x²)=
=((-2x³-26x²+18)/3x²)
1 номер
по теореме Пифагора находим высотуh=17^2-8^2(под корнем)=225(под корнем) = 15смS=15*8=120 см^2
2 задача
тут просто19*27=513 см^2
3 задача
Высота трапеции равна 4 умножить на корень из двух и умножить на косинус угла между указанной боковой стороной и перпендикуляром к основанию (перпендикуляр к основанию это линия в направлении высоты). Этот угол равен 135-90=45 (градусов). Косинус угла 45 градусов равен корню из двух делённое на два. Произведение длины указанной боковой стороны на косинус этого угла равен 4 умножить на корень из двух в квадрате и разделить на два. Получается Это высота исходной трапеции. А её площадь равна произведению среднего арифметического длин оснований и высоты, то есть (16+18)/2 умножить на 4 =68 (квадратных единиц)...
4 задача
у ромба все стороны равны значит по 7 каждая
проведем диагонали и угол 60 градусный разделится на два 30 градусных
рассмотрим уже прямоугольный треугольник
катет лежащий против угла в 30 градусов равен половине гипотенузы и равен 3,5
по теореме Пифагора находим второй катет он равен 6
s ромба равна 3,5*6 и делим на 2 = 10,5
5 задача
пусть х одна сторона тогда
2(х+13)=62
х+13=31
х=18
S прямоугольника= 18*13=234 квадратных единиц
все)))
Х(6-х)=0
Х1=0
Х2=6
Положительный корень уравнения х=6