Чтобы найти точки экстремума, нужно найти производную этой функции, те. 3х^2-3. Далее производную прировнять к нулю. Получатся корни 1 и (-1) 1 - точка максимума, (-1) -точка минимума. На промежутке (-бесконечность; -1) U ( 1; + бесконечность) функция возрастает. А на промежутке от (-1;1) -убывает.
Чтобы найти точку перегиба графика функции, нужно найти вторую производную этой функции, которая будет равно 6х. Далее приравниваем 6х к нулю. Х = 0. 0 -точка перегиба графика функции.
Эта функция является вогнутой при x > 0 и выпуклой при x < 0. В самом деле, y'' = 6x, но 6x > 0 при x > 0 и 6x < 0 при x < 0, следовательно, y'' > 0 при x > 0 и y'' < 0 при x < 0, откуда следует, что функция y = x^3-3х+1 вогнутой при x > 0 и выпуклой при x < 0
Чтобы найти точки экстремума, нужно найти производную этой функции, те. 3х^2-3. Далее производную прировнять к нулю. Получатся корни 1 и (-1) 1 - точка максимума, (-1) -точка минимума. На промежутке (-бесконечность; -1) U ( 1; + бесконечность) функция возрастает. А на промежутке от (-1;1) -убывает.
Чтобы найти точку перегиба графика функции, нужно найти вторую производную этой функции, которая будет равно 6х. Далее приравниваем 6х к нулю. Х = 0. 0 -точка перегиба графика функции.
Эта функция является вогнутой при x > 0 и выпуклой при x < 0. В самом деле, y'' = 6x, но 6x > 0 при x > 0 и 6x < 0 при x < 0, следовательно, y'' > 0 при x > 0 и y'' < 0 при x < 0, откуда следует, что функция y = x^3-3х+1 вогнутой при x > 0 и выпуклой при x < 0
(2+y)y+15;
2y + y^2 = 15
y^2+2y-15=0
D= 4+60=64
y1= -2+8/ 2=3
y2=-2-8/2=-5
x1= 2+3=5
x2= 2-5=-3