ответ: 0 и 1 - корни данного уравнения
Объяснение:
Решаем методом подстановки
Подставим -1
Имеем (-1+3)(4-(-1)) - 12 = 0
2*5 - 12 = 0
10 - 12 = 0
-2 = 0
Равенство неверно, поскольку его левая и правая части различны, соответственно -1 не подходит
Подставим 0
Имеем (0+3)(4-0) - 12 = 0
3*4 - 12 = 0
12 - 12 = 0
Все верно, соответственно 0 подходит
Подставим 1
Имеем (1+3)(4-1) - 12 = 0
4*3 - 12 = 0
12 - 12 = 0
Все верно, соответственно 1 подходит
Подставим 2
Имеем (2+3)(4-2) - 12 = 0
5*2 - 12 = 0
10 - 12 = 0
-2 = 0
Равенство неверно, поскольку его левая и правая части различны, соответственно 2 не подходит
Подставим 3
Имеем (3+3)(4-3) - 12 = 0
6*1 - 12 = 0
6 - 12 = 0
-6 = 0
Равенство неверно, поскольку его левая и правая части различны, соответственно 3 не подходит
Объяснение:
y = |x-4| + |x+1|
Итак, имеем функцию с двумя модулями. Под модулями стоят выражения вида g(x)=x-a
На промежутке (a; +∞), g(x) > 0
На промежутке (-∞; a), g(x) < 0
При x=a, g(x) = 0
Этот анализ понять, что наш график будет иметь три состояния, когда оба модуля раскрываются со знаком +, когда оба модуля раскрываются со знаком -, и когда они раскроются с разными знаками
Рассмотрим случай, когда -1 > x. Оба подмодульных выражения примут отрицательные значения. Модули раскроются со знаком минус. y = -(x-4) - (x+1) = -2x + 3Рассмотрим случай, когда -1 <= x < 4. Тогда первый модуль откроется со знаком -, а второй со знаком плюс. y = -(x-4) + x + 1 = 5Рассмотрим случай, когда 4 <= x. Тогда оба модуля откроются со знаком плюс. y = x - 4 + x + 1 = 2x - 3Имеем 3 промежутка, на каждом из которых своя прямая. Такой график иногда называют "корыто". Две боковые прямые образуют "стенки", а "дно" образовано горизонтальной линией.
Осталось построить вышеперечисленные 3 функции, но учитывая их промежуток. График приложен.
+
cos(-п/6)=cos(п/6) т.к. cos - четная функция