Если некоторая точка принадлежит прямой, то её координаты должны удовлетворять формуле. Руководствуясь этим запишу преполагаемые уравнения для каждой точки. Общее уравнение прямой будем искать в виде y = kx+ b
A: 2 = -4k + b
B: 5 = -3k + b
Составим теперь систему двух уравнений.
-4k + b = 2 4k - b = -2 k = 3
-3k + b = 5 -3k + b = 5 b = 14
Значит, искомое уравнение прямой y = 3x + 14
Отсюда находим, что угловой коэффициент равен 3
Задание выполнено.
1) a/16 + x/16 =(a+x)/16
2) 5m/n - 3m/n =2m/n
3) 3x +4y/12 - x+2y/12 =2x+6y/12=2x+y/2
4) a+2b/2c - a-4b/2c =b/c-2b/c=-b/c
5) a-8/a^2-25 + 13/a^2-25 =a-8/(a+5)*(a-5)
6) 5x+1/2 - x/2 =9x/2+1/2=4,5x+1/2
7) a+3/4 - a+1/4 =4/4=1
8) 2x/a-b - x/b-a =2x/a-b + x/a-b=3x/a-b
9) a/x-1 + b/1-x =a/x-1 - b/x-1=a-b/x-1
10) a-5/a-3 + a+5/3-a =a-5/a-3 - a+5/a-3=(a-5)*(a+5)/a-3=(a^2-25)/a-3
11) 3x-2/5 + 5x-3/3 =(9x-6+25x-15)/15=(24x-21)/15=3*(8x-7)/15=(8x-7)/5
12) 2m+5/6 - m-a/8 =m+(20-6a)/24=m+2*(10-3a)/24=m+(10-3a)/12
13) 7/10a -5/4a =(70-25)/20a=45/20a=9/4a
Для начала переведём все скорости в метры за минуту - так удобнее.
6 км/ч = 100 м/мин
7,2 км/ч = 120 м/мин
Пешеходов обозначим (1), (2) и (3)
Теперь рассмотрим временную линию.
Момент "ноль" - все сидят на старте, пьют чай.
Момент "один" - через 30 минут м/мин * 30 мин = 3000 м, (2): 120 м/мин * 30 мин = 3600 м, (3): стартует.
Момент "два" - через какое-то время, обозначим его х минут, когда (3) догнал (1). К этому моменту м/мин *(30+х) мин = 100(30+х) м, (2): 120 м/мин * (30+х) мин = 120(30+х) м, (3): 100(30+х) м - столько же, сколько (1)
Момент "три" - через 40 мин после момента "два", когда (3) догнал (2). К этому моменту м/мин *(70+х) мин = 100(70+х) м, (2): 120 м/мин * (70+х) мин = 120(70+х) м, (3): 120(70+х) м - столько же, сколько (2)
Теперь запишем скорость (3) на участке "один"-"два". Он х) м за х минут, то есть его скорость равна
На участке "два"-"три" х) м за (х+40) минут, то есть его скорость равна
Поскольку скорость его постоянна, можем записать равенство:
Решаем уравнение:
100(30+x)(х+40)=120(70+x)х
100(30х+х²+1200+40х)=120(70х+x²)
7000х+100х²+120000=8400х+120x²
20x²+1400х-120000=0 (сокращаем на 20)
x²+70х-6000=0
Д=4900+24000=28900
х₁=(-70+170)/2=50
х₂=(-70-170)/2=-120 (не подходит, время не может быть отрицательным)
Значит, (3) догнал (1) через 50 минут. Подставим это значение и найдём скорость (3):
160 м/мин = 9,6 км/час
ответ: скорость третьего туриста 9,6 км/час