График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
Даны функции, сначала их нужно построить. 1) Чтобы построить функцию y=x^2 , рисуем таблицу, в которой подставляем небольшие иксы и находим игреки. И по получившимся точкам чертим параболу. 2) Чертим x=1 и x=2 . Это вертикальные прямые, которые пересекаются с осью х в точках (1;0) и (2;0) . 3) Чертим y=0 . Это горизонтальная линия, которая полностью совпадает с осью х. Начертили, теперь видно, какую фигуру ограничивают эти линии ( она закрашена красным) . Нужно найти ее площадь.
Площадь равна определенному интегралу той функции (x^2) . Пределы - это иксы, на которых заканчивается и начинается данная фигура. В данном случае это 2 и 1. (на графике обвела их красными кружочками). Вот и все, решаем интеграл.