Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Пусть n – первое число, тогда второе n+1 ( т. к. по условию три последовательных числа) , третье n+2. сумма квадратов равна 2030, т. е. n²+(n+1)²+(n+2)²=2030 раскрываем скобки n²+ n²+2n+1+ n²+4n+4=2030 n²+ n²+2n+1+ n²+4n+4-2030=0 приводим подобные 3 n²+6n-2025=0 вынесем общий множитель 3, для простоты расчета 3 (n²+2n-675)=0 или n²+2n-675=0 дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле д=в²-4ас=2²-4*1*(-675)=4+2700=2704 корни квадратного уравнения определим по формуле n₁=-в+√д/2а=-2+√2704/2*1=-2+52/2=50/2=25 n2=-в+√д/2а=-2-√2704/2*1=-2-52/2=-54/2=-27 натуральное число это числа используемые для счета, следовательно подходит только один корень. соответственно, первое число равно 25, второе 26, третье 27
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.