Я подозреваю что тут закралась неясность, в прогрессии насколько я помню количество элементов бесконечно, хотя в убывающей геометрической прогресии сумма всех элементов может сходиться. инфми словами условие следует понимать так что n первых членов прогресии, где n = 2k, выполняется условие в три раза больше, чем рассмотрим это более подробно на примере первых шести элементовсумма нечетных S(1,3,5) = b1 + b3 + b5сумма четных S(2,4,6) = b2 + b4 + b6 = b1*q + b3*q + b5*q = q(b1 + b3 + b5) = q*S(1,3,5)следовательно отношение между четной суммой и нечетной равно знаменателю прогрессии.Для нашей задачи это число 3
x1=1
x2=-1
x3=0
___<0-1__>0___0__<0___1__ >0
y(-1)=1/2-1=-1/2 точка минимума
y(0)=0 точка максимума
y(1)=1/2-1=-1/2 точка минимума