1) 8 < 2x+y < 30
2) 6 < xy < 48
3) -3 < x-y < 6
Объяснение:
3 < x < 8
2 < y < 6
1) 2x+y
сначала вычислим минимальный предел:
2*3+2=8;
затем максимальный:
8*3+6=30.
Получится 8 < 2x+y < 30
2) xy
сначала вычислим минимальный предел:
3*2=6;
затем максимальный:
8*6=48.
Получится 6 < xy < 48
3) x-y
Так как здесь присутствует вычитание. Сначала из меньшего значения x вычитаем большее значение y, так мы получим минимальный предел выражения x-y. Потом из большего значения x вычитаем меньшее значение y, так мы получим максимальный предел значения x-y.
сначала вычислим минимальный предел:
3-6=-3;
затем максимальный:
8-2=6.
Получится -3 < x-y < 6
Если у равен нулю, то х² = 4.
Отсюда система имеет 2 решения: х = 2 и х = -2.
Общее решение системы тоже имеет 2 решения.
Графически данная система - это окружность радиуса 2 с центром в начале координат и кубическая парабола.
Они пересекаются в двух точках.
Для определения координат точек пересечения надо решить систему уравнений:
{у = х³
{x² + y² = 4.
Подставим х³ во второе уравнение вместо у.
х² + х⁶ = 4.
Если заменить х² = t, то получим кубическое уравнение:
t³ + t - 4 = 0.
Для вычисления корней данного кубического уравнения используем формулы Кардано.
Решение даёт один вещественный корень: t = 1.3788.
Отсюда х = +-1,17422 и у = +-1,61901.
Находим гипотенузу