ответ: 2)
1) -3 < a < -2 (по координатной прямой)
Вычтем единицу из каждой части двойного неравенства:
-3 - 1 < a - 1 < -2 -1
-4 < a - 1 < -3 --- верно.
2) b < 0 (по координатной прямой)
Домножим на (-1) обе части неравенства:
-1 * b > -1 * 0
-b > 0, то есть неравенство -b < 0 --- неверное
Проверим остальные:
3) a < 0
b < 0
Сложим два неравенства:
a + b < 0 --- верно
4) b < 0
a < 0; a² > 0 (по определению квадрата)
Тогда произведение положительного на отрицательное будет число отрицательное, то есть a²b < 0 --- верно
ответ: 2)
1) -3 < a < -2 (по координатной прямой)
Вычтем единицу из каждой части двойного неравенства:
-3 - 1 < a - 1 < -2 -1
-4 < a - 1 < -3 --- верно.
2) b < 0 (по координатной прямой)
Домножим на (-1) обе части неравенства:
-1 * b > -1 * 0
-b > 0, то есть неравенство -b < 0 --- неверное
Проверим остальные:
3) a < 0
b < 0
Сложим два неравенства:
a + b < 0 --- верно
4) b < 0
a < 0; a² > 0 (по определению квадрата)
Тогда произведение положительного на отрицательное будет число отрицательное, то есть a²b < 0 --- верно
(x-1)*(x+3)² -5*(x+3)=0
(x+3)*((x-1)*(x+3) -5)=0
(x+3)*(x²+2x-8)=0
Все выражение равно нулю, когда хотя бы один из множителей равен нулю:
x+3 =0, x=-3
x²+2x-8=0, D=4+4*8=36=6²
x1=(-2+6)/2=2
x2=(-2-6)/2=-4
ответ: -3, 2 и -4