1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Решение
Возможны два варианта записи
Первый
y = (e^(x+1))*ln(x+5)
y'=((e^(x+1))*ln(x+5))' =(e^(x+1))'*ln(x+5)+(e^(x+1))*(ln(x+5))'=
=(e^(x+1))*ln(x+5)+(e^(x+1))*1/(x+5) =(e^(x+1))(ln(x+5)+1/(x+5))
Второй
y=
y'=(e^((x+1)ln(x+5)))' = e^((x+1)ln(x+5))*((x+1)ln(x+5))'=
=e^((x+1)ln(x+5))*((x+1)'ln(x+5)+(x+1)(ln(x+5))')=
=e^((x+1)ln(x+5))*(ln(x+5)+(x+1)/(x+5))