1) Решить систему линейных уравнений (СЛУ) – это значит найти упорядоченный набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство (тождество). Кроме того, система может не иметь решений , то есть быть несовместной.
2) Решение СЛУ с двумя неизвестными представляет собой пару значений двух переменных (х,у) , который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений).
3) Система может иметь более одного решения. И если система имеет более одного решения, то таких решений бесчисленное множество .
4) Система может не иметь решения, то есть она будет несовместной.
5) Графический метод решения СЛУ с двумя переменными состоит в том, чтобы начертить графики двух заданных уравнений (это будут прямые). Затем уже по графикам можно делать выводы о количестве решений системы и нахождении их, если они существуют.
6) Если СЛУ с 2 переменными имеет единственное решение, то графики прямых пересекаются в одной точке .
7) Если СЛУ с 2 переменными не имеет решений, то графики прямых параллельны.
8) Если СЛУ с 2 переменными имеет бесчисленное множество решений, то графики прямых совпадают.
1) n - четное => n=2k, где k - натуральное число
74^(2k) + 74^(2k+1) + 74^(4k)
Степень первого слагаемого четно при любом значении k
Степени второго слагаемого нечетно при любом значении k
Степень третьего слагаемого четно при любом значении k
Так как нас интересует последняя цифра, то будем рассматривать степени числа 4
4^1=4
4^2=16
4^3=64
4^4=256
4^5=1024
4^6=4096
Видим закономерность, что каждую четную степень на конце мы имеем цифру 6 и что каждую нечетную степень на конце мы имеем цифру 4
Следовательно в выражении 74^(2k) + 74^(2k+1) + 74^(4k) первое слагаемое заканчивается на 6, второе слагаемое заканчивается на 4 и третье слагаемое заканчивается на 6. 6+4+6=16 - последняя цифра 6 => последняя цифра в выражении 74^(2k) + 74^(2k+1) + 74^(4k) будет 6 при любом значении k
2) n - нечетное => n=2k-1, где k - натуральное число
74^(2k-1)+74^(2k)+74^(4k-2)
Степень первого слагаемого нечетно при любом значении k
Степени второго слагаемого четно при любом значении k
Степень третьего слагаемого четно при любом значении k
Аналогичными рассуждениями, мы приходим к тому, что первое слагаемое заканчивается на 4, второе слагаемое заканчивается на 6 и третье слагаемое заканчивается на 6. 4+6+6=16 => последняя цифра в выражении 74^(2k) + 74^(2k+1) + 74^(4k) будет 6 при любом значении k
=> 74^n + 74^(n+1) + 74^(2n) будет иметь на конце 6 при любом значении n.
ответ: 6