4x² + 1 = 0 a = 4 | b = 0 | c = 1
D = b² - 4ac = 0 - 4 * 4 * 1 = 0 - 16 = -16 < 0, корней нет
2m² - 3m = 8 -3m
2m² - 3m - 8 + 3m = 0
2m² - 8 = 0 a = 2 | b = 0 | c = -8
D = b² - 4ac = 0 - 4 * 2 * (-8) = -64 < 0, нет корней
3x² - 4x = 0 a = 3 | b = -4 | c = 0
D = b² - 4ac = 16 - 4 * 3 * 0 = 16 > 0, 2 корня
x₁ = -b + √D/2a = 4 + 4/6 = 8/6 = 4/3
x₂ = -b - √D/2a = 4 - 4/6 = 0/6 = 0
4x² - 9 = 0 a = 4 | b = 0 | c = -9
D = b² - 4ac = 0 - 4 * 4 * (-9) = 144 > 0, 2 корня
x₁ = -b + √D/2a = 0 + 12/8 = 12/8 = 3/2 = 1,5
x₂ = -b - √D/2a = 0 - 12/8 = -12/8 = -3/2 = -1,5
отметь как лучший!
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение:
(x-y)(-a(х²+ху+у²)+xy(х+у)+a^3)=(x-y)(-aх²-аху-ау²+x²y+ху²+a^3)=(x-y)(-aх²+a^3+ху²-ау²+x²y-аху)=
(x-y)(-a(х²-a²)+у²(х-а)+xy(х-а))=(x-y)(-a(х-a)(х+а)+у²(х-а)+xy(х-а))=(x-y)(х-a)(xy-aх-а²+у²)=(x-y)(х-a)(x(y-a)+(у+а)(у-а))=(x-y)(х-a)(y-a)(x+у+а)