#3/ 1.Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексныхчисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы/. Виды: Виды матриц: квадратная, студенчатая, нулевая, дигональная, единичная, скалярная, треугольная и другие 2. Для матрицы определены следующие алгебраические операции:сложение матриц, имеющих один и тот же размер;умножение матриц подходящего размера (матрицу, имеющую n столбцов, можно умножить справа на матрицу, имеющую n строк);в том числе умножение на матрицу вектора (по обычному правилу матричного умножения; вектор является в этом смысле частным случаем матрицы);умножение матрицы на элемент основного кольца или поля (то есть скаляр).
Вам, видимо, нужно решить уравнение, и вы решили найти точки экстремума? Производная в обычном смысле 6x^2-10x+5=0 Если её решить, то получится D=10^2-4*6*5=100-120=-20<0 Значит, экстремумов нет. Кубическая функция везде растёт. Уравнение имеет 1 корень. Найдём его приблизительно. f(0)=-12<0; f(1)=2-5+5-12=-10<0 f(2)=2*8-5*4+5*2-12=-6<0 f(3)=2*27-5*9+5*3-12=12>0 x€(2;3) Дальше можно уточнить f(2,5)=0,5>0; f(2,4)=-1,152<0 Посчитал на калькуляторе. x€(2,4; 2,5) Дальнейшее уточнение дало f(2,47)=-0,016~0; x~2,47
lnF(x)=x^2ln(1+cosx)
F'(x)/F(x)=2xln(1+cosx)-x^2sinx/(1+cosx)
F'(x)=(1+cosx)^(x^2)(2xln(1+cosx)-x^2sinx/(1+cosx))
(ln(tgx^3))'=(1/tgx^3)*(3x^2)*(1/cos^2(x^3))=6x^2/sin(2x^3)