15*(X+3)*(X-5) + 10*(X+2)*(X-5) +6*(X+2)*(X+3) \ 30*(X+2)*(X+3)*(X-5) = 2
15*(X^2-2X-15) +10*(X^2-3X-10) +6*(X^2+5X+6) = 60*(X+2)*(X+3)*(X-5)
15X^2 - 30X - 225 + 10X^2 - 30X - 100 +6X^2 +30X + 36 =
= 31X^2 - 30X - 289
60*(X+2)*(X+3)*(X-5) = 60*(X^2+5X+6)*(X-5) = 60*(X^3 - 19X -30) = 60X^3 - 1140X - 1800
31X^2 - 30X - 289 = 60X^3 - 1140X - 1800
60X^3 - 31X^2 - 1110X - 1511 = 0
Берём производную:
180X^2 - 62X - 1110X = 0
2*(90X^2 - 31X - 555) = 0
D = 961 - 4*90*(-555) = 961 + 199800=200761 V D = 448
X1 = 31 + 448 \ 180 = 2.6
X2 = 31 - 448 \ 180 = - 417\180 = - 2.3
1) 2cos 5п/6 + tg п/3 = 2cos(п-п/6) + tg п/3 = -2cosп/6 + tg п/3 = -√3 + √3 = 0
2) sin(п-a) = √2/2
sina = √2/2
sin^2 a + cos^2 a = 1
0,5 + cos^2 a = 1
cos^2 a = 0,5
cos2a = cos^2 a - sin^2 a = 0,5 - 0,5 = 0
3) ctg^2 a + cos^ a - 1/sin^2 a
(ctg^2 a * sin^2 a + cos^2 a * sin^2 a - 1) / sin^2 a
(cos^2 a + cos^2 a * sin^2 a - 1) / sin^2 a
(cos^2 a * sin^2 a - sin^2 a) / sin^2 a
sin^2 a * (cos^2 a - 1) / sin^2 a
cos^2 a - 1 = -sin^2 a
В четвертом я немного не догоняю сам пример: где должно быть деление и т.д.
( √ 10 - X) + √ ( X - 5) ) ^ 2 = ( √ 5)^2
( √ 10 - X)^2 + 2 * [ ( √ 10 - X) * ( √ X - 5 ) ] + ( √ X - 5)^2 = 5
10 - X + X - 5 + 2 * √ ( 10 - X)*( X - 5) - 5 = 0
2 √ ( 10 - X) * ( X - 5 ) = 0
10 - X = 0
X = 10
X - 5 = 0
X = 5
ответ 10 и 5