М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gona1
gona1
22.06.2020 02:05 •  Алгебра

Докажите, что последовательность заданная формулой сn=(3n-1)/(5n+4) монотонно возрастающая и ограниченная. найдите число к которому стремится сn.

👇
Ответ:
Дарья22031
Дарья22031
22.06.2020
Найдем разность между двумя соседними членами.
c_{n+1}-c_n=\dfrac{3n+2}{5n+9}-\dfrac{3n-1}{5n+4}=\dfrac{(3n+2)(5n+4)-(3n-1)(5n+9)}{(5n+4)(5n+9)}=\\=\dfrac{17}{(5n+4)(5n+9)}
Из выражения для разности очевидно, что сама разность положительна - числитель и знаменатель положительны. Тогда последовательность возрастающая.

Я утверждаю, что все члены не больше 3/5. Действительно, cn < 3n / 5n = 3/5 (я уменьшила знаменатель и увеличила числитель, от этого дробь стала больше). Для успокоения можно всё написать по-честному:
\dfrac35-c_n=\dfrac35-\dfrac{3n-1}{5n+4}=\dfrac{(15n+12)-(15n-5)}{25n+20}=\dfrac{17}{25n+20}0

К слову, удалось доказать, что искомый предел равен 3/5: понятно, что 17/(25n + 20) стремится к нулю при больших n. А по определению число А называется пределом последовательности xn, если |xn - A| стремится к нулю.

Найти предел можно было и так: разделим числитель и знаменатель на n
\dfrac{3n-1}{5n+4}=\dfrac{3-\frac1n}{5+\frac4n}\to\dfrac{3-0}{5+0}=\dfrac35
4,7(88 оценок)
Ответ:
megamerezhnikova
megamerezhnikova
22.06.2020
Подставляя значения n=1, 2, ..., n,
убеждаемся, что последовательность возрастающая.

Находим предел (при n стремящемся к бесконечности)

lim ((3*n-1)/(5*n+4)) = 3/5 - последовательность  ограниченная и стремится к числу 3/5
4,6(99 оценок)
Открыть все ответы
Ответ:
Нолик27
Нолик27
22.06.2020
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
4,8(26 оценок)
Ответ:
Длина окружности находится по формуле L=2ПR, R- радиус окружности.
В окружность вписан правильный шестиугольник, который состоит из правильных треугольников. У правильного треугольника все стороны равны. Следовательно, основание треугольника  равно радиусу вписанной окружности а=R. Площадь правильного треугольника S=V3a^2/4, а площадь правильного шестиугольника в 6 раз больше и равна S=3V3a^2/2. (значок V - обозначение корня квадратного)ю Подставим:  72V3= 3V3a^2/2, сократим на V3 и получим 72=3 a^2/2; 48=a^2   a= 4V3=R.  L=2П*4V3=8V3П
ответ: L=8V3П см
4,8(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ