ответ:Извиняюсь что не в том порядке
Объяснение:
б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде
1-sin (a)²/sin (a)+1
Использу а²-b²=(a-b)(a+b) разложим на множители выражение
(1-sin (a))*(1+sin(a))/sin(a)+1
Дальше мы можем сократить дробь на sin(a)+1
отсюда 1-sin(a)
a) Упростим выражение Sin^2 a/(1 + cos a).
Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:
Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);
разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:
(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);
Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:
(1 - cos a) * 1/1 = 1 - cos a;
Значит, sin^2 a/(1 + cos a) = 1 - cos a.
I.
1) 18у⁵-12ху²+9у³= 3у²·(6у³-4х+3у)
2) - 14аb³с²-21a²bc²-28a³b²c= -7abc·(2b²c+3ac+4a²b)
II.
1) a(3x-2y)+b(3x-2y) = (3x-2y)·(a+b)
2) (x+3)(2y-1)-(x+3)(3y+2)= (x+3)·(2y-1-3y-2)=(x+3)·(-y-3) = - (x+3)·(y+3)
III.
1) 3x-x²=0
x· (3-x) = 0
x₁ = 0;
3-x = 0 => x₂ = 3
ответ: {0; 3}
2) y²+5y=0
y·(у+5) = 0
у₁ = 0
у+5=0 => y₂ = -5
ответ: {0; -5}
IV.
27³+3⁷ = (3³)³ + 3⁷ = 3⁹ + 3⁷ = 3⁷· (3² + 1) = 3⁷· (9+1) = 3⁷ · 10
Понятие "кратно 10" означает "деление на 10 нацело"
(3⁷·10) : 10 = 3⁷ Доказано!