М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ga1mer
Ga1mer
06.02.2020 08:26 •  Алгебра

Среднемесячная температура в москве в мае 18 градусов. в июне она поднимается на 30%. какова среднемесячная температура в москве в июне?

👇
Ответ:
pro100rak2
pro100rak2
06.02.2020
◕‿◕◕‿◕** Решение во вложении **.◕‿◕◕‿◕
4,4(45 оценок)
Ответ:
18гр-100%
хгр-(100+30)%
х=18*130/100=23,4гр среднемесячная температура в Москве в июне

Среднемесячная температура в москве в мае 18 градусов. в июне она поднимается на 30%. какова среднем
4,4(7 оценок)
Открыть все ответы
Ответ:
alina0000000p
alina0000000p
06.02.2020

ответ

Соотношение параметров квадрата

Приведём формулы периметра Р и площади S квадрата через длину стороны а.

периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;

площадь квадрата S равна квадрату его стороны а: S = a²;

периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.

Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.

Вычисление увеличения периметра и площади квадрата

Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:

Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;

S1 = а1² = (3 * а)² = 9 * а².

После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:

для вычислений используем написанные выше формулы для площади S и периметра P;

чтобы узнать, во сколько раз увеличится периметр квадр

чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.

Согласно выше сказанного, ответим на вопросы задания:

во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);

во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).

заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.

ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.

Объяснение:

здесь показан ответ только цифрами 9 и 3 А ты вставь цифры которые даны в задание

4,6(45 оценок)
Ответ:
1)  Находим первую производную функции:
y' = -3x²+12x+36
Приравниваем ее к нулю:
-3x²+12x+36 = 0
x₁ = -2
x₂ = 6
Вычисляем значения функции на концах отрезка
f(-2) = -33
f(6) = 223
f(-3) = -20
f(3) = 142
ответ:   fmin = -33, fmax = 142
2)  
a) 1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = - 6x+12
Находим нули функции. Для этого приравниваем производную к нулю
- 6x+12 = 0
Откуда:
x₁ = 2
(-∞ ;2)   f'(x) > 0   функция возрастает
(2; +∞)    f'(x) < 0функция убывает
В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума.
б)  1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -12x2+12x
или
f'(x) = 12x(-x+1)
Находим нули функции. Для этого приравниваем производную к нулю
12x(-x+1) = 0
Откуда:
x1 = 0
x2 = 1
(-∞ ;0)   f'(x) < 0  функция убывает 
(0; 1)   f'(x) > 0   функция возрастает
 (1; +∞)   f'(x) < 0   функция убывает
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.

3. Исследуйте функцию с производной f(x)=2x^2-3x-1
1.  D(y) = R
2.  Чётность и не чётность:
f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная
3.  Найдём наименьшее и наибольшее значение функции
Находим первую производную функции:
y' = 4x-3
Приравниваем ее к нулю:
4x-3 = 0
x₁ = 3/4
Вычисляем значения функции 
f(3/4) = -17/8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4
Вычисляем:
y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции.
4.  Найдём промежутки возрастания и убывания функции:
1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = 4x-3
Находим нули функции. Для этого приравниваем производную к нулю
4x-3 = 0
Откуда:
x₁ = 3/4
(-∞ ;3/4)   f'(x) < 0 функция убывает
 (3/4; +∞)   f'(x) > 0   функция возрастает
В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума.
4,4(45 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ