М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ніка2007
ніка2007
13.10.2020 14:14 •  Алгебра

Help please! вставити пропущені одночлени: 27 n^35a^3).вопрос 2: найти значения м,при каких (3x-5^2)+(4x+12^2)+mx можна подать в виде квадрата двучлена.и вопрос довести тотожность 9(a--2^3)=(a+1)(a-2)(5-a)извените,что так много .пишите кто чем

👇
Ответ:
hamov1408p06m04
hamov1408p06m04
13.10.2020
1)  должно быть так:
(3n+∛5 a)³= 27· n³ +3·(3n)²·(∛5 a)+3·(3n)·(∛5a)²+5a³=
=27· n³+ 27 ·∛5 ·n²·a + 9·∛25·n·a²+5a³
2) (3х-5)²+(4х+12)² + mx = 9x²-30x+25+16x²+96 x+144+mx=
  =25x² +(66+m)x + 169
 получается, что первое слагаемое  (5х)², третье (13)²
среднее должно быть  удвоенное произведение (5х) на (13)
(66+m)x = 2·5x·13
66+m=130
m=130-66
m=64
при m=64 получим квадрат двучлена ( 5х + 13)
3) 9 (а-2) - (а-2)³= 9а - 18 - ( а³-6а²+12 а - 8)= 9а-18- а³ + 6а²-12 а +8=
= - а³+ 6а² -3а-10
   (а+1)(а-2)(5-а)=(а²+а-2а-2)(а-5)=(а²-а-2)(5-а)=5а²-5а-10 -а³+а²+2а=
=-а³ +6а²-3а-10
4,4(42 оценок)
Открыть все ответы
Ответ:
joeehazber
joeehazber
13.10.2020
Находим скалярное произведение векторов АВ и АС.
Сначала в координатах. Скалярное произведение равно сумме произведений одноименных координат.
Вектор АВ имеет координаты {9-4; 1-6; 3-5}={5;-5;-2}
Вектор АC имеет координаты {2-4; 10-6; 10-5}={-2;4;5}
Скалярное произведение АВ на  АС равно
5*(-2)+(-5)*4+(-2)*5=-10-20-10=-40
С другой стороны скалярное произведение равно произведению длин векторов на косинус угла между ними
Длина АВ равна корню квадратному из суммы квадратов координат
√(5²+(-5)²+(-2)²)=√54=3√6
Длина АС
√((-2)²+4²+5²)=√(4+16+25)=√45=3√5
cos A=-40/3√6·3√5=-40/9√30=-40√30/270=-4√30/27
угол А равен arccos (-4√30/27)
4,4(92 оценок)
Ответ:
1).  √(20/x  +1) -√(20/x  -1)  =6 ;
 √((x+20)/x) -√(-(x -20)/x) = 6 ;
ОДЗ :{ (x+20)/x ≥ 0 ;(x-20)/x ≤0.  { x∈ (-∞; -20]  U (0;∞) ; x∈( 0;20].  ⇔ x∈( 0;20].
           или               
√(20/x  +1) = 6 +√(20/x  -1)  ;
(√(20/x  +1))² = (6 +√(20/x  -1))² ;
20/x  +1 = 36 +12√(20/x  -1) + 20/x  -1 
√(20/x  -1) = -17/6  невозможно  (√ ≥ 0) ;
8
 2).  √(20/x  +1) + √(20/x  -1)  = √6  ;
ОДЗ : x∈( 0;20]  смотри предыдущий  пункт .
 √(20/x  +1)  = √6  - √(20/x  -1) ;
 (√(20/x  +1))²  = (√6  - √(20/x  -1))² ;²
20/x  +1 = 6 -2√6*√(20/x  -1)  +20/x  -1 ;
2√6*√(20/x  -1)  = 4 ;
√6*√(20/x  -1) =2 ;
6*(20/x  -1) = 4 ;
20/x  -1 = 2/3 ;
 20/x  = 5/3 ;
4/x =1/3 ;
x=12  ∈ ОДЗ .
ответ:12  .
проверка    
 √(20/12  +1) + √(20/12  -1)  = √16/6 +√4/6 =4/√6 + 2/√6 =6/√6=√6.
4,8(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ