Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.
8 = 4k + b
-13 = -2k + b
Выразим из первого уравнения b и подставим во второе
b = 8 - 4k
-13 = -2k + 8 -4k
6k = 21
k=3.5
b = 8 - 4*3.5 = -6
y = 3.5x - 6