Знаешь, при подстановке не всегда хорошее уравнение получается, вряд ли ты умеешь такие решать, поэтому надо попробовать метод замены переменной. Например, , вот теперь мы можем заменить первое уравнение на более простое и решить 2 системы, объединив их решения. , корней нет. Решаем вторую систему: Здесь b=a+c (-2=1-3), тогда , а теперь в любое уравнение подставляем каждое из получившихся и в ответе пишем 2 точки: , получили точки (3;-1);(-1;3). Довольно похожие значения, объясняется это всё квадратами в первом уравнении системы. ответ:(3;-1);(-1;3).
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.