По согласованию со спрашивающим в знаменателе 3й дроби Х²-9
одз
x - 3 ≠ 0
x ≠ 3
x + 3 ≠ 0
x≠ -3
x² - 9≠ 0
x ≠ -3 ; x ≠ 3
2x 1 6
- =
x - 3 x + 3 x² - 9
2x * (x + 3) - 1*(x - 3) 6
=
( x - 3) * (x + 3) x² - 9
2x² + 6x - x + 3 6
=
x² - 9 x² - 9
2x² + 5x + 3 6
=
x² - 9 x² - 9
Умножаем обе части уравнения на (x² - 9). Избавляемся от знаменателей.
2x² + 5x + 3 = 6
2x² + 5x + 3 - 6 = 0
2x² + 5x - 3 = 0
D= 5² - 4 * 2 * (-3) = 25 + 24 = 49 > 0 ⇒ уравнение имеет 2 корня
x₁ = (-5 - (-7)) / (2*2) = (-5 + 7) / 4 = 2/4 = 1/2 = 0,5 (корень отвечает одз)
x₂ = (-5 - 7) / (2*2) = -12/4 = -3 (корень не отвечает одз)
Проверка
2* (1/2) 1 6
- =
1/2 - 3 1/2 + 3 (1/2)² - 9
1 / (-5/2) - 1 / (7/2) = 6 / (-35/4)
-1*2/5 - 1*2/7 = -6*4/35
-2*7/35 - 2*5/35 = -24/35
-14/35 - 10/35 = -24/35
-24/35 = -24/35
ответ: 1/2
1. log₂(x+1)<log₂(6-2x) ОДЗ: x+1>0 x>-1 6-2x>0 x<3 ⇒ x∈(-1;3)
x+1<6-2x 3x<5 x<5/3=1²/₃.
ответ: x∈(-1;1²/₃).
2.lg(x-3) >0 ОДЗ: x-3>0 x>3.
lg(x-3)>lg1 x-3>1 x>4.
ответ: x∈(4;+∞).
3. log₅((3-x)/(2-x))<1 ОДЗ: -∞__+__2__-__3__+__+∞ ⇒ x∈(-∞;2)U(3;+∞)
log₅((3-x)/(2-x))<log₅5 (3-x)/(2-x)<5 3-x<10-5x 4x<7 x<7/4=1³/₄
ответ: x∈(-∞;1³/₄).
4. log₃₃(33x+2)≤1 ОДЗ: 33x+2>0 33x>-2 x>-2/33
log₃₃(33x+2)≤log₃₃33
33x+2≤33 33x≤31 x≤31/33
ответ: x∈(-2/33;31/33].
5. log₁/₉(2x-1)+log₁/₉(x)>0 ОДЗ: 2x-1>0 x>1/2 x>0 ⇒ x>1/2=0,5
log₁/₉((2x-1)*x)>log₁/₉1
(2x-1)*x<1 2x²-x-1<0 D=9 x₁=1 x₂=-0,5 ⇒
(x-1)(x+0,5)<0 -∞__+__-0,5__-__1__+__+∞ ⇒ x∈(-0,5;1).
ответ: x∈(0,5;1).
При а = 0,2, b = -5 имеем:
ответ: 25,04