(x-3)/х - данная дробь (х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь Так как по условию их разность равна 3/20, то составляем уравнение: (х-2)/(х+1) - (х-3)/ х = 3/20 приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1 20х(х-2)-20(х+1)(х-3) = 3х(х+1) 20х²-40х-20х²+40х+60=3х²+3х 3х²+3х-60=0 | :3 х²+х-20=0 Д=1+80=81=9² x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4 x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи ответ: 1/4
1. График функции - квадратная парабола с коэффициентом сжатия по оси Х, равным 3.5, направленная ветвями вниз и смещенная по оси Y вниз на 2.6. График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях. 2. Выполним преобразования. y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2 График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6. Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.
Здесь можно применить формулу разность квадратов
И будет равно
25 а^4 - 9 в^2