М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
linaaaaaaa11111111
linaaaaaaa11111111
06.09.2021 08:00 •  Алгебра

Вычеслите: а) 15,7*3,09+15,7*2,91 б) 4,03*28,9-17,9*4,03

👇
Ответ:
PomogitePLZZZzzzz
PomogitePLZZZzzzz
06.09.2021
15,7*3,09+15,7*2,91=15,7*(3,09+2,91)=15,7*6=94,2

б) 4,03*28,9-17,9*4,03=4,03* (28,9-17,9)=4,03*17,9*4,03=4,03* 11=44,33
4,4(38 оценок)
Открыть все ответы
Ответ:
толя151
толя151
06.09.2021

Найдём производную функции

y'=(x^3-2x^2+4)'=3x^2-4x

Теперь найдём критические точки(y'=0):

3x^2-4x=0\\x(3x-4)=0\\x=0\ \ \ \ \ \ \ \ \ \ \ 3x-4=0\\x=0\ \ \ \ \ \ \ \ \ \ \ x=\frac{4}{3}

Начертим прямую, нанесём точки на интервал. Там где производная положительная функци возрастает, отрицательная убывает. Там где функция сначало возрастала(убывала), а после в какой-то точке начало убывать(возрастать), то это точка экстрэмума.

Вложение.

Промежутки возрастания, убывания(промежутки монотонности):

(-бесконечности;0] - возрастает

(0;4/3] - убывает

(4/3;+бесконечности) - возрастает.

 Экстэмумы функции: 0 - точка максимума.

                                         4/3 - точка минимума. 

Рисунок вложение. 

Чтобы найти наибольшее и наименьшее значение на отрезке нужно найти значения на функции на концах отрезков, и на точках которые входят в этот промежуток. У нас это точки: -1;4;0;4/3

f(-1)=(-1)^3-3*(-1)^2+4=-1-3+4=0\\f(0)=0^3-3*0^2+4=4\\f(4)=4^3-3*4^2+4=64-48+4=20\\f(\frac{4}{3})=(\frac{4}{3})^3-3*(\frac{4}{3})^2+4=\frac{64}{27}-3*\frac{16}{9}+4=\frac{64}{27}-\frac{16}{3}+4=\\=\frac{64}{27}-\frac{144}{27}+\frac{108}{27}=\frac{28}{27}\\f_{max}=20\\f_{min}=0

 

 

 

 

уравнение касательной:

f=(y'(x_0))(x-x_0)+y(x_0) 

Найдём y(x0):

y(x_0)=4*\sqrt{4}=8

Найдём производную.

y'(x)=(4*\sqrt{x})'=\frac{4}{2\sqrt{x}}=\frac{2}{\sqrt{x}}

y'(x_0)=y'(4)=\frac{2}{\sqrt{4}}=1 

Подставим в уравнение касательной.

f=(1)*(x-4)+8=x+4 


Завтра сдовать контроную годовую,а я не готов.. и не знаю как решать.. y=x^3-3x^2+4 надо найти проме
Завтра сдовать контроную годовую,а я не готов.. и не знаю как решать.. y=x^3-3x^2+4 надо найти проме
4,6(40 оценок)
Ответ:
HeLLDeViLL
HeLLDeViLL
06.09.2021

Исследуйте на четность функцию :

1)  y =    f(x) =  - 8x + x² +  x³

2)  y =   f(x)  = √(x³ + x²) - 31*| x³ |

ни четные ,ни нечетные

Объяснение:

1)  

f(x) =  - 8x + x² +  x³ ;  Область Определения Функции: D(f)  = R

функция ни чётная ,ни нечётная

проверяем:

Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)

а) f(-x) =  - 8*(-x) +(- x)² +(- x)³ =  8x + x² -  x³   ≠  f(-x)

Как видим, f(x)≠f(-x), значит функция не является четной.

б)  

f(-x)  ≠ -  f(-x) →  функция не является нечетной

- - - - - -

2)

y =   f(x)  = √(x³ + x²) - 31*| x³ | ,

D(f) : x³ + x² ≥ 0 ⇔ x²(x+1)  ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *

ООФ  не симметрично  относительно  начало координат

* * *  не определен , если  x ∈ ( -∞ ; - 1) * * *

функция ни чётная ,ни нечётная

4,8(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ