Зная автора задания как специалиста (в частности) в области геометрии, после первых неудачных попыток сделать эту задачу я подумал о возможности применить геометрию, после чего появилась надежда на успех.
Во-первых, мы можем считать, что x > 0 (если x<0, то y(x)>y(-x), то есть при отрицательном x наименьшее значение достигаться не может. Значение y(0)=6 пока просто запомним).
Пусть x>0 - некоторое число. Рассмотрим два . треугольника, один со сторонами 2 и x и углом в 30° между ними, второй - со сторонами 4 и x и углом в 90° между ними. Совместив их по стороне, равной x, получим 4-хугольник ABCD со сторонами AB=2, BC=4, диагональю BD=x и углом ABC, который диагональ BD делит на углы ABD=30° и DBC=90°. По теореме косинусов
Поэтому y(x) при положительном x - это сумма сторон AD и DС. Меняя x, мы меняем вершину D, двигая ее по лучу с вершиной B (при неподвижных A, B и C). Ясно, что сумма будет минимальной, когда четырехугольник ABCD вырождается (это когда D лежит на AC), и равна стороне AC,
Поскольку ответом в задаче будет
Замечание. Значение в нуле в принципе мы могли не вычислять, считая, что при этом получается вырожденный четырехугольник с нулевой диагональю.
в) Предположим, нам удалось вычеркнуть n сумм.
С одной стороны, сумма всех вычеркнутых чисел не меньше 1 + 2 + 3 + ... + 3n = 3n (3n + 1)/2; с другой стороны, сумма вычеркнутых чисел не больше 39 + 38 + 37 + ... + (40 - n) = n (79 - n) / 2. Поэтому n (79 - n) / 2 ≥ 3n (3n + 1)/2; 79 - n ≥ 9n + 3; n ≤ 7.
Покажем, что n = 7 возможно:
1 + 15 + 23 = 39
2 + 14 + 22 = 38
3 + 13 + 21 = 37
4 + 12 + 20 = 36
5 + 11 + 19 = 35
6 + 10 + 18 = 34
7 + 9 + 17 = 33
а) Например, первые 6 примеров выше
б) Нет, по доказанному
ответ. б) нет; в) 7