1) При x≤-1 - функция положительная При -1≤x≤4 - функция отрицательная При x≥4 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4 ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2) При x≤-6 - функция положительная При -6≤x<10 - функция отрицательная При x>10 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная): x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным: -1≤x≤4/3
Обозначим скорость при движении из А в Б через Х. Тогда на путь в 100 км (из А в Б) потрачено время 100/Х. На обратный путь потрачено время = 6 часов + 100/(Х+15). Знаем, что 100/Х=6+100/(Х+15) Приводим к общему знаменателю и получаем, что 100(Х+15)=6Х(Х+15)+100Х 100Х+1500=6Х^2+90Х+100Х Решаем квадратное уравнение 6Х^2+90Х-1500=0 и находим Х=10 (км/час, первоначальная скорость при движении из А в Б). Скорость при движении из Б в А = 10+15=25 км/час. Проверка: 100км:10 км/час=10 часов "туда" и 100/25=4 часа движения + 6 часов остановки = всего 10 час "обратно".
Обозначим скорость при движении из А в Б через Х. Тогда на путь в 100 км (из А в Б) потрачено время 100/Х. На обратный путь потрачено время = 6 часов + 100/(Х+15). Знаем, что 100/Х=6+100/(Х+15) Приводим к общему знаменателю и получаем, что 100(Х+15)=6Х(Х+15)+100Х 100Х+1500=6Х^2+90Х+100Х Решаем квадратное уравнение 6Х^2+90Х-1500=0 и находим Х=10 (км/час, первоначальная скорость при движении из А в Б). Скорость при движении из Б в А = 10+15=25 км/час. Проверка: 100км:10 км/час=10 часов "туда" и 100/25=4 часа движения + 6 часов остановки = всего 10 час "обратно".
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
-1≤x≤4/3